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Abstract

We present a spectral element model to solve the hydrostatic primitive equations governing large-scale geophysical

flows. The highlights of this new model include unstructured grids, dual h–p paths to convergence, and good scalability
characteristics on present day parallel computers including Beowulf-class systems. The behavior of the model is assessed

on three process-oriented test problems involving wave propagation, gravitational adjustment, and nonlinear flow

rectification, respectively. The first of these test problems is a study of the convergence properties of the model when

simulating the linear propagation of baroclinic Kelvin waves. The second is an intercomparison of spectral element and

finite-difference model solutions to the adjustment of a density front in a straight channel. Finally, the third problem

considers the comparison of model results to measurements obtained from a laboratory simulation of flow around a

submarine canyon. The aforementioned tests demonstrate the good performance of the model in the idealized/process-

oriented limits.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

We describe a new spectral element model for the solution of the three-dimensional hydrostatic primitive

equations, i.e., the Navier–Stokes equations as modified by the assumptions of hydrostatic balance and the

Boussinesq approximation. The spectral element method offers several attractive properties for geophysical

simulations: geometrical flexibility with a spatial discretization based on unstructured grids, high-order

convergence rates, and dense computations at the elemental level leading to extremely good scalability
characteristics on parallel computers. Our aim is to capitalize on these properties to obtain highly accurate

simulations of regional, basin-scale, and (eventually) global circulation processes.
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The spectral element method is an h–p type finite element method that approximates the solution within

each quadrilateral element with a high-order polynomial. The unstructured nature of its elemental grid

permits a better geometrical description of complex geometries (e.g., ocean basins), easily accommodates

spatially variable resolution to resolve regionally localized, fine-scale processes (such as western boundary

currents like the Gulf Stream), and therefore enables multi-scale simulations within the frame-work of a

single model. (Fig. 1 shows an example of a spectral element grid encompassing the North Atlantic basin.)

The spectral element method also offers a dual approach to convergence: algebraic (via elemental grid

refinement) and exponential (via increase in the order of intra-element interpolation). The combination of
spatially variable resolution, rapid convergence to the true solution, and excellent scalability on parallel

systems are especially advantageous for high-accuracy simulation of fine-scale geophysical processes.

Ma [16] presented the first application of the spectral element method to the simulation of two-di-

mensional geophysical flows. Iskandarani et al. [10] modified her procedure and staggered the pressure and

velocity grids in order to suppress spurious pressure modes. The model in [10] is the two-dimensional

precursor to the one presented herein, and solves the depth-integrated form of the three-dimensional

equations: the shallow water equations. This model has been tested thoroughly and various applications

can be found in [4,5,8,13,27]. The model�s scalability and performance on parallel machines is demonstrated
in [6]. More recently, Levin et al. [14] enhanced the model with a mortaring capability to allow the use of

multiple spectral expansions in different regions of the domain.

Taylor developed a spectral element atmospheric model (SEAM) capable of handling the full spherical

domain by regularizing the polar singularity [20,21]. The two-dimensional version of the atmospheric model

was validated using the standard spherical test suite of Williamson et al. [25]. This validation includes

comparison to analytical and model results and confirms that spectral elements have most of the advan-

tages of spherical harmonics including exponential converge under p-refinement (i.e., increasing the degree

N of the interpolating polynomial). Taylor and co-workers [20] have also demonstrated the efficiency of
SEAM for the three-dimensional primitive equations; their model relies on isobaric coordinates in the

vertical and on finite differences for the vertical discretization.

Fig. 1. Surface slice of a sample 3D spectral element grid showing the elements along with the Gauss–Lobatto points (N ¼ 6). The

elemental partition is evident since the Gauss–Lobatto points cluster near the element�s edge. The grid holds 388 elements, and has an

average grid spacing of 3/4�.
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All the models mentioned above use quadrilateral elements for the spatial discretization. Wingate has

devised a triangular spectral element method for the shallow water equations [26]. In addition, Taylor and

Wingate have explored triangular spectral elements that rely on Lagrange interpolants to approximate the

solution. Their method is described in [22,23,27].

Here, we present the extension of the two-dimensional ocean model to three dimensions. In particular,

we emphasize several key points that are of crucial importance in geophysical modeling. These issues are:

accurate treatment of underlying bathymetry, calculation of the baroclinic pressure gradients, and the

calculation of the depth-integrated (barotropic) component of the flow when the model is allowed to
support free-surface waves.

The plan for the rest of the paper is as follows. Section 2 lists the equations and boundary conditions

governing the flows of interest. Sections 3 and 4 discuss the changes to these equations arising due to the

mapping of the moving free surface to a steady computational domain and the variational formulation of

the resulting equations. Sections 5 and 6 introduce the spatial and temporal discretizations of the equations,

respectively. Section 7 summarizes the solution procedure and discusses the calculation of the baroclinic

pressure terms.

Convergence properties of the resulting model are assessed in Section 9 in which we consider the
propagation of a baroclinic Kelvin wave along a periodic channel of constant depth. Section 10 investigates

the ability of the model to deal with the adjustment of density fronts in a straight channel. The last test case

(Section 11) compares the spectral element model results to laboratory measurements of a flow around a

submarine canyon; we focus in particular on recent numerical experiments (part of a sensitivity study) that

show improved agreement between model and experiment over results shown in [17]. Section 12 focusses on

the scalability issues and presents timings performed on the Cray-T3E. Finally, Section 13 summarizes and

discusses our experience with the spectral element model.

2. Equations of motion

The equations governing large-scale geophysical flows are the hydrostatic Boussinesq primitive equa-

tions:

Du
Dt

þ f � uþ grf þrp ¼ r � ðaruÞ þ o

oz
m
ou

oz

� �
; ð1Þ

op
oz

¼ �g
q
q0

; ð2Þ

r � uþ ow
oz

¼ 0 ð3Þ

supplemented (e.g., for the ocean) with conservation equations for temperature and salt concentration, and

an equation of state linking density to temperature and salinity:

D
Dt

T
S

� �
¼ r � atr

T
S

� �� �
þ o

oz
mt

o

oz
T
S

� �� �
; ð4Þ

q ¼ qðT ; SÞ: ð5Þ

Here, u is the horizontal velocity vector; w, the vertical velocity; f, the vertical Coriolis vector; g, the
gravitational acceleration; f, the surface displacement; q0, a constant reference density; qðx; z; tÞ, the
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departure of the total density from q0; and p is the baroclinic pressure divided by q0. Further, a and m are
the horizontal and vertical viscosity coefficients; at and mt, the horizontal and vertical diffusion coefficients;

and T and S are the fields of temperature and salinity. Finally, r stands for the two-dimensional horizontal

gradient operator, and D=Dt is the material derivative following a fluid particle,

D
Dt

¼ o

ot
þ u � r þ w

o

oz
: ð6Þ

The velocity boundary conditions at the top and bottom surfaces are the kinematic boundary conditions of

no-normal flow:

of
ot

þ u � rf ¼ w on z ¼ f; ð7Þ

u � rh ¼ �w on z ¼ �h; ð8Þ

and the dynamic boundary conditions specifying the stresses:

aruT
�

þ m
ouT

oz
k

�
� n ¼ s

q0

on z ¼ f; ð9Þ

aruT
�

þ m
ouT

oz
k

�
� n ¼ �ckuku on z ¼ �h; ð10Þ

where s is the prescribed wind-stress, n is the outward unit normal, hðxÞ is the resting depth, c is the

quadratic drag coefficient, and uT refer to the transpose of u.
On the lateral boundaries, we apply either a no-slip boundary condition: u ¼ 0, or free-stress boundary

conditions: u � n ¼ rðu � tÞ � n ¼ 0, where t is the tangent to the boundary in the horizontal direction. Notice

that no boundary conditions are needed for w on the lateral surfaces of the domain since w is computed

diagnostically from the continuity equation.

The boundary conditions for the tracers are of Neumann type

atrT
�

þ mt
oT
oz

k

�
� n ¼ Q; ð11Þ

atrS
�

þ mt
oS
oz

k

�
� n ¼ B; ð12Þ

where Q and B are the specified fluxes of heat and salinity, respectively.

The presence of the free surface gives rise to surface gravity waves that travel at speeds much larger than

those of other phenomena of interest. The common cure, which we follow here, is to isolate the gravity

waves in a set of two-dimensional equations which are integrated separately from those characterizing the

three-dimensional circulation. The 2D equations are similar to the shallow water equations and can be

obtained by vertical integration of the three-dimensional momentum and continuity equations:

of
ot

þr � ðh½ þ fÞU� ¼ 0; ð13Þ

oU

ot
þU � rUþ f �Uþ grf ¼

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jrfj2

q
q0ðhþ fÞ �

c kuku½ �z¼�h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jrhj2

q
hþ f

þD� C; ð14Þ
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where U is the depth-average velocity

U ¼ 1

hþ f

Z f

�h
udz ð15Þ

and D represent the effect of the horizontal viscous dissipation on the depth-mean flow, and C is the

coupling term between the two- and three-dimensional momentum equations. The derivation of the depth-

averaged equations is outlined in Appendix A, and expressions for C and D are given in Eqs. (A.10) and

(A.11). The first and second terms on the right-hand side of Eq. (A.10) contain the contributions of the
baroclinic velocity and of the baroclinic pressure gradient to the depth-mean flow. The surface and bottom

boundary conditions on the velocity have been used in the derivation of the depth-averaged equations.

3. Mapping of the free surface

Since the surface is moving, the domain V occupied by the fluid is time-dependent. In order to simplify

the calculations, we map our domain to a steady computational space ðx; Z; tÞ where

Zðx; z; tÞ ¼ h
z� f
hþ f

: ð16Þ

The height z 2 ½�h; f� is thus mapped into the interval Z 2 ½�h; 0�.
Under this transformation, the horizontal gradient, material derivative, and divergence operators be-

come

rU ¼ rZU � oU
oZ

oZ
oz

rZz; ð17Þ

oU
oz

¼ oU
oZ

oZ
oz

; ð18Þ
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����
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����
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þ W
oU
oZ

; ð19Þ

r � uþ ow
oz

¼ rZ � uþ
oW
oZ

þ oZ
oz

D
Dt

oz
oZ

� �
; ð20Þ

where ðo=oxÞjZ , ðo=oyÞjZ , and rZ denote the x and y derivatives, and the horizontal gradient operator along
constant Z-lines. W is the vertical velocity in the mapped space

W ¼ DZ
Dt

¼ oZ
oz

w
�

� u
oz
ox

����
Z

� v
oz
oy

����
Z

� oz
ot

����
Z

�
: ð21Þ

We note the following:

1. The solution of the equations in ðx; Z; tÞ space requires that the above definitions of the gradient, di-
vergence, material derivative, and vertical velocity be used for the discretization.

2. If U in Eq. (17) is depth-independent, then rU ¼ rZU.
3. The evaluation of the integrals in the variational form (see below) require the integration over the vol-

ume of elements, and the latter involves the Jacobian of the mapping between the unsteady physical

domain and the steady computational domain
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Js ¼
oz
oZ

¼ 1þ f
h
� 1þO

f
h

� �
; ð22Þ

Js is approximately equal to one since f � h except for the inner continental shelves and estuaries. This

approximation amounts to neglecting variations in the volume of fluid due to the surface displacement.

Computationally, it results in a tremendous savings in computational effort since the three-dimensional

mass matrix becomes steady in time and need not be updated. This mapping has the additional benefit of
preserving the structure of the three-dimensional equations provided the advection terms are evaluated

with the new vertical velocity W .

4. Variational formulation

The variational formulation of Eq. (1) is:Z
V

U
Du
Dt

�
þ f � uþ grf þrp

�
dV ¼ �

Z
V

aruT � rU

�
þ m

ouT

oz
oU
oz

�
dV þ

Z
oVf

s

q0

UdS

�
Z
oVb

ckukuUdS; ð23Þ

where U is the three-dimensional test function associated with the velocity and tracer fields. oVf refers to the
free surface boundary, and oVb refers to the sea-bed boundary. The boundary integrals weakly enforce the
Neumann and Robin (mixed) boundary conditions imposed on the velocity field. Dirichlet boundary

conditions are enforced by setting the test function U to zero on the Dirichlet portions of the boundary, and

setting u equal to the imposed boundary value, e.g., zero on no-slip walls.

Likewise, the variational formulation of Eq. (4) is given by:Z
V

U
D
Dt

T
S

� �
dV ¼ �

Z
V

atr
T
S

� �
� rU

�
þ mt

o

oz
T
S

� �
oU
oz

�
dV þ

Z
oV

Q
B

� �
UdS: ð24Þ

The continuity equation is differentiated in the vertical before integration in order to ease the imposition of

surface and bottom boundary conditions. Its variational formulation becomes:Z
V

oU
oz

oW
oz

dV ¼
Z
V

oU
oz

oZ
oz

U � rh
h

�
� oZ

oz
rZ �

oz
oZ

ðu
�

�UÞ
��

dV : ð25Þ

The variational formulation of the barotropic equations is a little more elaborate since the f field uses a

staggered grid with respect to the velocityZ
A

w
of
ot

dA�
Z
A
ðhþ fÞU � rwdA ¼

Z
oA

wqdl; ð26Þ

Z
A

/
oU

ot

�
þU � rUþ f �Uþ grf

�
dA ¼ �

Z
A

/
c kuku½ ��h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jrhj2

q
hþ f

dA

þ
Z
A

/
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jrfj2

q
q0ðhþ fÞ dAþ

Z
A

/ D½ � C�dA; ð27Þ

where w and / refer to the two-dimensional test functions associated with f and U, respectively. The di-

vergence term in the continuity equation has been integrated by parts to allow the imposition of inflow as
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weak boundary conditions, and to produce a symmetric positive matrix equation for f in case an implicit

integration scheme is adopted (see Section 6). The q in (26) refers to the inflow per unit width. Notice that

the integrals in the above equations are performed over a horizontal surface.

5. Spatial discretization

The spatial discretization relies on isoparametric and conforming hexahedral elements (cubes with
curved surfaces) with C0 continuity. The three-dimensional variables in each element are approximated

with a high-order Lagrangian interpolant whose collocation points are the Gauss–Lobatto roots of the

Legendre polynomials. Hence, the 3D fields in element e are interpolated as:

uðn; g; rÞ
wðn; g; rÞ
T ðn; g; rÞ
Sðn; g; rÞ
qðn; g; rÞ
pðn; g; rÞ

0
BBBBBB@

1
CCCCCCA

¼
XN
l¼1

XN
m¼1

XM
n¼1

uv
lðnÞuv

mðgÞvv
nðrÞ

ue
lmn

we
lmn

T e
lmn

Se
lmn

qe
lmn

pe
lmn

0
BBBBBB@

1
CCCCCCA
; ð28Þ

where uv
i and uv

j are the horizontal interpolation functions, v
v
k is the vertical interpolation function, ðn; g; rÞ

is the local coordinate system in element e, N is the number of collocation points in each horizontal di-

rection, M is the number of collocation points in the vertical, and ue
lmn is the value of u at the ðN ;N ;MÞ

Gauss–Lobatto–Legendre roots ðnv
l ; g

v
m; r

v
nÞ; for details see [1,10]. Notice that we have kept the order of the

interpolation in the vertical and horizontal directions separate since the vertical and horizontal structures of

the solution may be quite different. It is best to keep the orders of the vertical and horizontal interpolations

independent so they can be adjusted individually to achieve the best h–p balance in each direction.

The two-dimensional variables are interpolated according to

Uðn; gÞ ¼
XN
l¼1

XN
m¼1

uv
lðnÞuv

mðgÞU
e
lm; ð29Þ

fðn; gÞ ¼
XN�2

l¼1

XN�2

m¼1
up

l ðnÞup
mðgÞf

e
lm; ð30Þ

where up
l refers to the surface displacement interpolation function whose collocation points are given by the

ðN � 2Þ Gauss–Lobatto–Legendre roots. The f collocation points are staggered with respect to those of U

in order to eliminate spurious pressure oscillations when the barotropic flow is almost divergence-free (see

[10]).
Given the complicated bathymetry of ocean basins, and the lack of appropriate three-dimensional grid

generation software, we have decided to simplify the elemental partitioning in the vertical by restricting it to

a structured discretization, i.e., the number of vertical elements does not vary horizontally. A three-di-

mensional spectral element grid can thus be produced by stacking vertically and conformally a number of

two-dimensional grids. In addition, we require that the local coordinate lines be vertical in order to de-

couple the vertical and horizontal calculations. This decoupling reduces the operation count tremendously

if, for example, vertical diffusion is integrated implicitly. These two restrictions are not severe since we are

still able to fit the three-dimensional elements to the bathymetry of the basin, to distribute vertical reso-
lution according to a priori considerations, and to retain the unstructured nature of the grid in the hori-

zontal direction. A vertical slice of a sample spectral element grid is shown in Fig. 2.
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The interpolations (28) and (30) are substituted into the Galerkin formulation to yield a system of or-

dinary differential equations, after setting

U ¼ uv
i ðnÞuv

jðgÞvv
kðrÞ; ð31Þ

/ ¼ uv
i ðnÞuv

jðgÞ; ð32Þ

w ¼ up
i ðnÞup

j ðgÞ; ð33Þ

and evaluating the resulting integrals numerically.

6. Temporal discretization

Eqs. (1)–(5), (13) and (14) form a tightly coupled system of nonlinear partial differential equations that

must be integrated in time. The prognostic variables are the horizontal velocity u, the temperature T , the
salinity S, the surface displacement f, and the barotropic velocity U. The vertical velocity, density, and

baroclinic pressure are calculated diagnostically from the continuity equation, the equation of state, and the

hydrostatic equation, respectively.

The temporal discretization of Eq. (1) is based on a semi-implicit integration scheme. The non-linear

advection term, the Coriolis term, the horizontal viscous term, and the baroclinic pressure gradient term are

integrated with a third-order Adams–Bashforth (AB3) time step. The vertical viscous term is integrated

with an implicit second-order Crank–Nicholson scheme for enhanced numerical stability, since the vertical

viscosity m may need to be increased during calculations to simulate rapid vertical mixing associated with
convective overturning events. Finally, the barotropic pressure gradient is integrated with a fully implicit

backward Euler scheme to damp the high-frequency waves effectively.

The time-discretized momentum equations have the form

M
Dt

�
þ hDz

�
utþ1 ¼ ax � gGxftþ1; ð34Þ

M
Dt

�
þ hDz

�
vtþ1 ¼ ay � gGyftþ1; ð35Þ

Fig. 2. Vertical slice of a 3D spectral element grid used in the canyon simulations showing the elemental partition. The elements are

refined near the bottom to improve the resolution of near-bed dynamics. The vertical and horizontal scales are in centimeters.

404 M. Iskandarani et al. / Journal of Computational Physics 186 (2003) 397–425



where M is the diagonal three-dimensional mass matrix, the matrix Dz is the discrete vertical Laplace

operator, h is the weight factor of the implicit scheme (h ¼ 1
2
for the Crank–Nicholson scheme), Gx and Gy

are the gradient operators in the x and y directions, and ax and ay contain the explicitly treated terms and

the terms known from previous time levels in the horizontal momentum equations. We have shown ftþ1 on
the right-hand sides to emphasize that the surface displacement is computed from the barotropic equations,

and appears as a forcing term in the three-dimensional equations. Note that the mass matrix is diagonal

because the integrals in the variational formulations are evaluated with Gauss–Lobatto–Legendre quad-

rature and the weight functions are the Legendre cardinal functions [1].
The tracer equations are also integrated in time with a semi-implicit scheme: AB3 for the advection and

horizontal diffusion terms and second-order Crank–Nicholson for the vertical diffusion term. In matrix

notation, the tracer equations become:

M
Dt

�
þ hDz

�
T
S

� �tþ1

¼ f T

f S

� �
: ð36Þ

Our current code supports two methods of integration for the barotropic Eqs. (13) and (14): a semi-

implicit scheme and a split-explicit scheme. In the semi-implicit scheme, all terms are treated explicitly with

AB3 except for the pressure gradient term, rf, in Eq. (14) and the linear divergence term, r � ðhuÞ, in Eq.

(13) which are integrated with a backward Euler scheme. These two terms are responsible for the existence
of the fast gravity waves and their implicit treatment eliminates the severe explicit time step restriction. The

matrix form of the barotropic equations is thus:

Mv

Dt
Utþ1 þ Gxftþ1 ¼ bx; ð37Þ

Mv

Dt
V tþ1 þ Gyftþ1 ¼ by ; ð38Þ

Mp

Dt
ftþ1 �KxU tþ1 �KyV tþ1 ¼ c: ð39Þ

Eqs. (37)–(39) can be integrated with a large time step whose size is dictated by the time scales, or

stability restrictions, of baroclinic dynamics. The advantage of this approach is that the barotropic

equations can be integrated synchronously with the three-dimensional equations. Its disadvantage is

mainly computational: a system of simultaneous algebraic equations must be solved at each time step.

Since the system is symmetric positive definite, we solve the equations with conjugate gradient itera-

tions.
The split-explicit scheme introduces a two-time-step integration process. First the barotropic equations

are integrated explicitly using a small time step, Ds, that respects the CFL stability limit of the gravity

waves. The barotropic equations take the form:

Mv

Ds
Ut;sþ1 ¼ b̂bx; ð40Þ

Mv

Ds
V t;sþ1 ¼ b̂by ; ð41Þ

Mp

Ds
ft;sþ1 ¼ ĉc: ð42Þ
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If the ratio between the long and short time step is denoted by L, then the above integration is carried out

from s ¼ 0 to s ¼ 2L. The surface displacement thus calculated is time-averaged to filter out the fast time

scales and

Utþ1

ftþ1

� �
¼ 1

2Lþ 1

X2L
s¼0

Ut;s

ft;s

� �
: ð43Þ

The time-average is also necessary to eliminate incipient instabilities [9]. The three-dimensional equations

are then integrated, using the filtered surface displacement, on a long time step whose size can be chosen
based on the time scales of the baroclinic dynamics. The main advantage of this procedure is that it avoids

the solutions of a system of equations, and is simple to implement. Its main disadvantage is that it com-

plicates the evaluation of the coupling term, C, between the barotropic and three-dimensional equations. In

our current implementation, this term is fixed in time at the previous time level and is updated only after the

integration of the three-dimensional equations. Moreover, the time-filtering exacts a computational pen-

alty: in order to center the time-averaging procedure around the next long time level, ðt þ 1ÞDt, the
barotropic equations must be integrated until time level ðt þ 2ÞDt before the averaging procedure is applied.
We have used the split-explicit scheme in all the computations presented herein.

7. Solution procedure

The solution proceeds as follows:

1. The two-dimensional equations are integrated to calculate the surface displacement at the new time

level, fnþ1, and the depth-averaged velocity, Unþ1. This step requires the solution of a two-dimensional

system of equations if the semi-implicit scheme is used.
2. fnþ1 is substituted into the three-dimensional momentum equations to update the three-dimensional

horizontal velocity, unþ1. This calculation is explicit unless implicit treatment of vertical mixing is ap-

plied. At the end of this second step, two estimates for the depth-averaged velocity are available: one

from the integration of the 2D equations and another from the 3D equations

~UU ¼ 1

hþ fnþ1

Z fnþ1

�h
udz: ð44Þ

This artifact is a result of the separate integration of the slow and fast waves. A correction term,

ðUnþ1 � ~UUÞ, is added to unþ1 in order to prevent a slow drift of the two estimates, and to ensure that

the depth-averaged components are integrated with a small time step.

3. The tracer equations are integrated in time to calculate the new temperature and salinity fields. This

phase of the update is also explicit unless a convective parameterization is used to mix the tracers ver-

tically when the water column becomes statically unstable.

4. The horizontal divergence of unþ1 is evaluated and integrated vertically to calculate the vertical veloc-
ity W nþ1.

5. The equation of state is used to compute the density field qnþ1 implied by the new temperature and

salinity. The baroclinic pressure gradient is then updated with the help of Eq. (53), see Section 8.

The majority of the computations are associated with the calculation of the right-hand sides of the

prognostic and diagnostic equations. These calculations can be effectively carried out at the element level by

first computing the local effect of the operators in each element before assembling the elemental vectors.

The assembly procedure affects nodes that are shared by more than one element and the resultant com-

munication pattern is solely neighbor-to-neighbor. The local computations consist mostly of the calculation
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of the gradients of various fields and of integrals arising from the Galerkin formulation. The efficiency of

these computations is enhanced by the tensor product nature of the basis functions which allows a compact

summation scheme to be implemented in each direction. Furthermore, the implementation of explicit in-

tegration is straightforward since all the mass matrices are diagonal; hence, they require little storage and

their inverse is trivial to calculate.

The system of equations generated by the semi-implicit integration of the barotropic equations is solved

using conjugate gradient (CG) iterations. Iterative solutions are indispensable to reduce the memory and

cpu costs associated with the solution of the very large system of equations which results from the implicit
treatment. The conjugate gradient method has the additional benefits of dispensing with the assembly of a

large system of equations, preserving the locality of the computations at the element level, and scalability

and ease of implementation on parallel computers. The CG method preserves the assembly pattern of an

explicit integration scheme since the effect of the operators can be calculated in each element before as-

sembling the resultant vectors of residuals. The only global operations necessary in CG are the inner-

product and residual calculations which require the broadcast of scalars.

The systems of equations generated by a potential implicit integration of the vertical diffusion and/or

viscous terms during the second and third phase of the calculations would also be solved with conjugate
gradient iterations. Note that, although these equations originate from three-dimensional partial differ-

ential equations, they couple only the nodes aligned along the vertical direction – a consequence of re-

stricting the coordinate lines in the reference element to be strictly parallel to the vertical direction. The

system thus consists of a large number of horizontally uncoupled, vertically coupled small systems of

equations. We have opted to avoid solving these small systems with a direct method since their bandwidth is

larger than three, thus precluding tri-diagonal solvers, and the viscosity and diffusion coefficients are time-

dependent and would thus require multiple re-assembly and re-factorization steps.

The calculation of the vertical velocity generates a system of equations similar in structure to the ones
produced by the vertical diffusion terms. We solve this system by applying a direct method to the vertically

coupled equations. We reiterate that the continuity equation is differentiated first in the vertical to enforce

strongly and simultaneously the surface and bottom Dirichlet conditions on W . In its original form, the

continuity equations affords only one boundary conditions, and the other condition is met only ‘‘weakly’’ in

the sense that the errors incurred decrease as the exact solution is approached. The differentiation device

used here avoids the numerical drift of the vertical velocity at the surface or bottom, and can be shown to be

equivalent to a least-square enforcement of the continuity equation.

The computation of the density field from salinity and temperature information, whether from a linear
or nonlinear equation of state, involves polynomial evaluations only; no system of equations needs to be

solved. We now turn to the issue of computing rp.

8. Baroclinic pressure gradient

Care must be taken when computing the horizontal baroclinic pressure gradient since this term is among

the most significant in the momentum equations. The traditional procedure for this calculation is to in-
tegrate the hydrostatic equation for the pressure before differentiating it:

b ¼ gq
q0

; p ¼
Z f

z
bðx; z0; tÞdz0; rp ¼ rZp þ brZz: ð45Þ

It is well known that terrain-following methods like the present one suffer from pressure gradient errors in

the presence of topography and stratification. We proceed to quantify these errors by focussing on a simple

configuration: a two-dimensional vertical slice across a shelf like coastline as shown in Fig. 3 where, the
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ðn; gÞ computational lines are aligned along the cross-shelf (x) and along shelf (y) directions, respectively. In
what follows we neglect the motion of the free surface, and assume that properties are homogeneous in the
along-shelf direction for the sake of simplicity. The cross-shelf baroclinic pressure gradient in the offshore

direction is computed with the help of the chain rule of differentiation:

px ¼ pnnx þ prrx; ð46Þ

where the terms nx and rx are the metrics of the mapping of the 3D spectral element into computational

space. Let

px ¼ pnnx þ prrx ð47Þ

be the approximated pressure gradient (all variables with an overline will refer to numerical approxima-

tions). The difference between expressions (46) and (47) define the error

E ¼ px � px ð48Þ
¼ pnðnx � nxÞ þ nxðpn � pnÞ þ prðrx � rxÞ þ rxðpr � prÞ: ð49Þ

The hydrostatic approximation can be invoked to show explicitly the dependency of the hydrostatic error

on the density. This is straightforward for the last component of the error since pr ¼ �bzr, hence:

pr � pr ¼ �zrðb� bÞ � bðzr � zrÞ; ð50Þ

where zr is the stretching factor in the vertical. The expression for the second component is more com-

plicated since it involves the integration of the interpolated density field prior to differentiation. The error in

calculating the pressure field itself can be expressed as

p � p ¼
Z 0

z
ðb� bÞdz

 !
þ

Z 0

z
bdz

 
�
Z 0

z
bdz

!
: ð51Þ

The overline over the sign integral refer to the fact that the integral is evaluated with Gauss quadrature. The

first term on the right-hand side of (51) represents the error committed in interpolating the buyoancy, while

the second term is the error in approximating the integral by Gaussian quadrature. This second component

is small because of the high-order quadrature used: an M point Gauss–Lobatto quadrature in the vertical
integrates exactly a polynomial of degree less or equal to 2M � 3. Eqs. (49)–(51) shows that there are several

Fig. 3. Sketch of a shelf like coastline discretized with three spectral elements in the vertical using a sigma-like partition.
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factors contributing to the pressure gradient error: approximations of the metric factors nx, rx, approxi-

mations of the density fields and its (vertical) integration with Gauss quadrature, and finally errors in

interpolating and differentiating the hydrostatic pressure (the second term in (49)). In Appendix A we derive

a bound on the errors incurred by the representation of the geometry of Fig. 3.

An alternative form to the baroclinic pressure gradient has been proposed in recent years [18], and

consists of interchanging the order of integration and differentiation in Eq. (45):

rp ¼
Z f

z
rbdzþ bjfrf ð52Þ

¼
Z 0

Z
zZrZbð � bZrZzÞdZ 0 þ bjfrf: ð53Þ

The prime virtues of the above form is that it dispenses with the interpolation of the pressure field as an
intermediate variable (Song [18] has investigated the properties of the above formulation for finite differ-

ence models). Like the traditional scheme, the errors associated with (53) depend on geometric errors, on

the quality of the integration, and on the interpolation and differentiation of the density field. We have

implemented both schemes to compute rp in our model, and we have found that the error incurred is

similar in both forms.

9. Model performance: Kelvin waves

The favorable convergence properties of the method described here may be verified by reference

to an analytical solution describing the propagation of a baroclinic Kelvin wave in a periodic channel

of constant depth h and width b. The linearized equations that include the motion of the free surface

are:

ut � fv ¼ �px � gfx; ð54Þ

vt þ fu ¼ �py � gfy ; ð55Þ

pz ¼ �g
q0

q0

; ð56Þ

ux þ vy þ wz ¼ 0; ð57Þ

qt þ wqz ¼ 0: ð58Þ

Here we have split the perturbation density into two parts: q ¼ qðzÞ þ q0 and we have assumed q0 � q. In
addition to periodicity in time and in the long channel direction (x), we impose the boundary conditions

ft ¼ w and p ¼ 0 on z ¼ 0, w ¼ 0 on z ¼ �h, and v ¼ 0 on y ¼ 0; b.
For cases where the Coriolis parameter is constant and the stratification is linear, the Kelvin wave so-

lutions are:

u ¼ kga
r cos bh

cos bðzþ hÞe�ly cosðkx� rtÞ; ð59Þ

v ¼ 0; ð60Þ
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w ¼ kga
N cos bh

sin bðzþ hÞe�ly sinðkx� rtÞ; ð61Þ

q0 ¼ q0ba
cos bh

sin bðzþ hÞe�ly cosðkx� rtÞ; ð62Þ

p ¼ q0ga
cos bh

cos bðz½ þ hÞ � cos bh�e�ly cosðkx� rtÞ; ð63Þ

f ¼ ae�ly cosðkx� rtÞ: ð64Þ

Here, a is the (arbitrary) amplitude of the surface displacement, N is the buoyancy frequency (N 2 ¼
�gqz=q0), r ¼ kN=b is the frequency of the motion, l ¼ bf =N is the off-shore decay scale, and b are the

solutions to the dispersion relation:

b tan bh ¼ N 2

g
: ð65Þ

The emphasis in this section is on the convergence behavior of the model as the horizontal resolution is
varied. For this reason we use a fixed high-order representation in the vertical, 4 elements of spectral

truncation of 9, to minimize the effects of vertical truncation errors. The model was initialized from the

analytical solution using the following parameters: f ¼ 10�4 s�1, h ¼ 1000 m, g ¼ 9:81 m=s2, N ¼ 20pf ,
k ¼ 2p=200 km�1, and a pressure amplitude a= cos bh ¼ 1 m. The equations were integrated for a single

wave period using a time step small enough that the error is dominated by spatial truncation errors. The

resulting convergence curves are plotted in Fig. 4 and show the difference between the numerical and

analytical solutions as a function of horizontal resolution. As expected the error decreases at an algebraic

rate that depends on the spectral truncation for h-refinement. The convergence is exponential under p-
refinement as is evident in the bottom right panel of Fig. 4.

10. Gravitational adjustment

We investigate the ability of the spectral element model to track the propagation of a density front in a

channel of uniform cross-section. The problem involves the gravitational adjustment of a two-density-layer

system, initially separated by a vertical wall [24]. The system is illustrated in Fig. 5. At time zero, the vertical
wall dividing the two immiscible fluids is removed; thereafter, the fluid layers adjust at the internal gravity-

wave phase speed to form a stably stratified, two-layer system. During and after the adjustment, sharp

density fronts divide the two layers both horizontally and vertically.

The gravitational adjustment problem is difficult because it tests the ability of the numerical model to

propagate a narrow moving front. Diffusive and dispersive errors stemming from the discretization can

destroy the structure of the solution quickly. The trouble manifests itself in the form of oscillations in the

density field, unphysical density extrema in the neighborhood of the front, and a distorted phase speed. A

faithful model would thus eliminate the oscillations, maintain the extrema of the density fields at their initial
values, and produce as narrow a front as possible while propagating it at the correct phase speed.

High-order methods are at a particular disadvantage in this class of problems because the front dis-

continuity defeats the spectral convergence of the method. The remedy we use here is to employ a small but

finite amount of diffusion to suppress the oscillations; the width of the front is thus numerically increased

until it is resolvable on the computational grid. Fig. 6 shows the density structure after 10 h of simulated

time for two values of the dissipation and diffusion parameters. A reference solution obtained with
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SCRUM [19], a finite-difference based ocean model with a second-order centered advection scheme, is
included for comparison. Table 1 lists the values of the density extrema and the phase speeds obtained with

the two models.

The high-order spectral element solutions are quite similar in propagation speed and smoothness to the

results obtained with centered differences. Both models require sufficient explicit viscosity and diffusivity (in

the range 50–100 m2=s) to produce smooth well-behaved solutions. The two exhibit the same behavior in

that the amplitude of the oscillations grows with decreasing dissipation parameters; however, the estimate

of the phase speed is improved for the spectral element solution over the centered-difference results as

shown in Table 1. In this instance, the high-order method produces smaller spurious extrema than does the
low-order model with centered differencing. This test shows that once a level of ‘‘adequate’’ resolution is

Fig. 5. Sketch of the gravitational adjustment test problem The model domain is 64 km long and 20 m deep, and spatial resolution is

fixed at 0.5 km in the horizontal and 1 m in the vertical. The initial density contrast across the vertical front is 5 kg=m3; here q2 > q1.

Fig. 4. Convergence curves for the baroclinic Kelvin wave problem. K refers to the number of elements in the periodic direction and N
to the spectral truncation in the horizontal. The two top panels and the bottom left panels show the reduction in error as K increases

for fixed N (h-refinement). The bottom right panel shows the exponential decrease of the error as N increases, for a fixed elemental

partition, K ¼ 8 (p-refinement).
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reached, the properties of the high-order solution (including over- and under-shooting) are better than

those from low-order centered schemes. We refer the reader to [7] for further discussion of this, and other,

idealized ocean model test problems.

11. Residual circulation at a coastal canyon

Ultimately, numerical ocean models must be validated against observed geophysical flows. Unfortu-
nately, such comparisons are not easy to perform. The difficulties arise from the complexity of geophysical

flows which encompass a wide variety of processes resulting from a subtle interplay between rotation,

stratification, bathymetric variations, turbulent mixing, and other effects. Related to this is the difficulty of

Fig. 6. Comparison of results from spectral element model and SCRUM for the gravitational adjustment test problem: (a) spectral

element model, m ¼ a ¼ 100 m2 s�1; (b) SCRUM, m ¼ a ¼ 100 m2 s�1; (c) spectral element model, m ¼ a ¼ 50 m2 s�1; and (d) SCRUM,

m ¼ a ¼ 50 m2 s�1. The contour interval is 0:5 kg=m3 starting at 0:5 kg=m3.

Table 1

Minima, maxima, and phase velocity relative to the analytical solution for the gravitational adjustment experiment after 10 h of in-

tegration

Model Diffusion Viscosity Min (q) Max (q) Phase speed

SCRUM-centered 100 100 )0.156 5.138 0.913

SCRUM-centered 50 50 )1.678 6.603 0.927

Spectral element 100 100 )0.044 5.000 0.912

Spectral element 50 50 )0.540 5.601 0.932

The phase velocities are determined by computing the horizontal distance between the surface and bottom location of the 2.5

sigma-units density contour, divided by the time since the release of the front.
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obtaining datasets of adequate accuracy and space/time coverage for model initialization, forcing, and

validation.

Carefully designed laboratory experiments offer an important alternative for model verification by

providing a controlled setting wherein some of the difficulties associated with obtaining data in the field

can be avoided. In a recent example, Perenne et al. [17] have carried out a series of laboratory exper-

iments to simulate the three-dimensional time-mean circulation near a submarine canyon. Their aim is to

provide an independent reference ‘‘solution’’ which can be used to validate and improve the realism of

ocean models. Initial numerical experiments, conducted with SEOM, are used as a first means of
comparison.

The geometry of the laboratory and numerical experiments, shown in Fig. 7, is an annulus of 0.90 m

radius. The bathymetry is an idealized continental shelf/slope interrupted by a single canyon. The labo-

ratory forcing arises from a modulation in the background rotation rate. This is equivalent to a body force

proportional to the distance r from the center of the turntable. In the rotating reference frame, the result of

this body force is a depth-independent, oscillatory, along-coast current. In the absence of any azimuthal

variations in topography, the imposed forcing will not generate any time-mean (residual) currents. In the

Fig. 7. The top panel shows the elemental discretization of the domain. In this case, the resolution is enhanced in the vicinity of the

canyon. The inner cylinder representing the coast has a radius of 0.35 m and the outer cylinder has a radius of 0.90 m. The depth

contours are shown in the bottom panel (contour interval 0.01 m). The shallow regions near the inner cylinder have a depth of 0.025 m

and the ‘‘off-shore’’ depth near the outer cylinder is 0.125 m. The characteristic azimuthal and radial length scales of the canyon are

0.20 and 0.10 m, respectively.
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presence of the coastal canyon, however, a significant residual circulation can arise. The structure and

strength of this residual current is the basis for comparison between the laboratory measurements and the

numerical simulations.

From a geophysical perspective, a matter of much interest is the net three-dimensional circulation as-

sociated with coastal canyons, especially any time-mean cross-shelf exchange of fluid. Such enhancements

of cross-shelf exchange may have important consequences for biological productivity, carbon cycling, etc.

We note finally that barotropic tidal forcing on continental shelves provides a close mechanical analogue of

the oscillatory forcing which arises in these idealized experiments.
The environmental parameters which characterize this physical system include the height and width of

the canyon, the background rotation rate (and the amplitude and frequency with which it is modulated),

and the strength of the background stratification. Values of these environmental parameters were chosen so

as to approximately replicate the expected oceanic values of the essential non-dimensional parameters

(topographic aspect ratios, and the Rossby and Burger numbers). The latter two parameters express the

non-dimensional magnitude of non-linearity and stratification, and have values in these experiments of 0.1

and 10.0, respectively. Perenne et al. [17] describe in detail the choice of environmental parameters, and

their similarity to those encountered in the ocean.
The numerical solutions have been obtained using SEOM implemented in the annular geometry of Fig.

7. Additional terms have been added to the momentum equations in SEOM to incorporate the effects of the

modulation in the background rotation rate introduced in the laboratory [17]. All of the macroscopic non-

dimensional parameters in the numerical model are identical to those in the laboratory. The lowest

achievable values of subgridscale viscosities and diffusivities are, however, greater than molecular values by

factors of from 10 to 100. These minimum values depend greatly on such choices as vertical resolution and

the bottom boundary conditions applied.

The three experiments we discuss here are summarized in Table 2. Experiment E1 was the central case
described by Perenne et al. [17]. It has the lowest vertical resolution – eight, third-order elements (a total of

25 points) uniformly distributed in the vertical – and a minimum value of horizontal numerical viscosity of

10�4 m2=s, which is larger than molecular viscosity by a factor of 100. In these earlier numerical simula-

tions, the best results were obtained with a molecular value of vertical viscosity (10�6 m2=s) and a linear

bottom stress parameterization to represent the (laminar) bottom boundary layer thought to occur in the

laboratory flow:

s ¼ �q0

ffiffiffiffiffi
mf
2

r
ujz¼�h ¼ �0:05ujz¼�h: ð66Þ

The height of the Ekman boundary layer is dE ¼
ffiffiffiffiffiffiffiffiffiffi
2m=f

p
or about 2 mm for the physical flow.

With this choice of parameters, experiment E1 required a time step of 1 ms, as dictated by the viscous

CFL condition arising from the value of the horizontal viscosity and the minimum vertical grid spacing.

(Note: because the ‘‘horizontal’’ computational surfaces in SEOM are terrain-following, a truly geopo-

tential viscosity will have projections both along the terrain-following surfaces and along the vertical. Since

Table 2

Viscous parameters, vertical gridding, and bottom boundary condition for the three canyon experiments

Experiment Viscosity

(horiz./vert.)

Diffusivity

(horiz./vert.)

Vertical resolution Vertical stretching Bottom BC

E1 10�4=10�6 10�5=0 8@4 Uniform Stress-law

E2 10�4=10�6 10�5=0 20@6 Uniform No-slip

E3 10�5=10�5 10�5=0 10@6 Stretched No-slip

All units are mks.
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the slopes here are O(1), the resulting projection of horizontal viscosity onto the vertical is of the same order

as the horizontal viscosity itself. Since explicit time stepping is being used for these viscous terms, a very

stringent CFL limit applies.)

Considerations which arise in the Perenne et al. comparisons, see below, have since led us to attempt to

improve upon the viscous parameterizations in E1. Experiments E2 and E3 (Table 2) are two more recent

simulations in which lower values of horizontal viscosity and/or a true no-slip bottom boundary condition

have been employed. These improvements required more resolution in space and time, however. In our first

no-slip experiment (E2), vertical resolution was incresed to 101 points (20, fifth-order elements), and the
required time step decreased to 40 ls. A more economical, and less viscous, simulation (E3) is able to

reduce the horizontal viscosity to within a factor of 10 of the molecular value, and to reduce the total

number of points in the vertical to 51 (10, fifth-order elements) by using a stretched distribution of elements

(Fig. 2). Because of the reduced horizontal viscosity in E3, the required time step could be increased to 400

ls.
Both the laboratory and numerical experiments were run for 10 forcing cycles to allow initial transients

to disappear, then an average of the circulation over an additional two cycles was performed to obtain the

residual circulation. The results shown below are all windowed on a small area surrounding the canyon.
Perenne et al. [17] discuss three levels of laboratory/numerical model comparison based upon horizontal

velocity measurements. These three levels of comparison, which are in increasing level of stringency, are:

comparison of the directly forced (time varying) flow, comparison of the residual (time-averaged) flow, and

comparison of the residual horizontal vorticity and divergence fields. Comparisons of the first two of these

were generally good in the Perenne et al. study. For example, Fig. 8 shows the residual flow at the shelf-

break level in the laboratory model and in experiment E1. There is a good qualitative and quantitative

agreement between the laboratory and numerical experiments. The order of magnitude of the residual

currents is the same in both models; the anticyclonic loop at the upstream corner is more defined in the
laboratory model but still identifiable in the numerical results, which also exhibits an intensification of the

residual current at the upstream wall of the canyon although it is more distributed along the shelf-break. A

residual current emanating from the canyon at its downstream corner is also present in the numerical

solution. The main quantitative discrepancy between the laboratory and numerical results is that the nu-

merical model generates a somewhat stronger residual circulation; this current is partly recirculating but is

intensified in regions where it leaves the shallow water on its right. Note, lastly, that both models produce a

weak influx to the canyon along its axis, suggestive of net cross-shelf exchange. We return to this issue

below.
Despite these generally good comparisons of the residual horizontal currents, Perenne et al. found rather

less good agreement in the residual vorticity and divergence fields. These higher-order dynamical quantities

are of much interest – as they are indicative of the underlying patterns of three-dimensional circulation and

the degree of nonlinearity of the residual currents. As a consequence, they represent a much more stringent

test of model/model agreement. In the Perenne et al. study, the vorticity exhibits good structural agreement

between the two models although the maximum vorticity appears to be somewhat weaker in the numerical

model. In contrast, the numerical residual divergence field in experiment E1 is qualitatively different from

that measured in the laboratory.
Since the spectral element algorithms used here are designed to deliver an accurate solution to the

discretized equations representing the laboratory flows, the discrepancies in the observed and simulated

residual currents were assumed to arise from one (or both) of two sources. First, it is possible that spatial

resolution – e.g., of the important bottom boundary layers at the coastal floor – is insufficient in E1.

Second, the assumed physical equations, which are themselves approximate by virtue of several large- and

grid-scale assumptions (e.g., hydrostatic balance, linear Ekman bottom stress law, etc.) may be the source

of some of the experiment-model differences observed by Perenne et al. Experiments E2 and E3 have since

been conducted to assess these alternatives.
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The residual vorticity and divergence fields given by all three numerical experiments, as well as the

laboratory model, are shown in Figs. 9 and 10. Note in particular that whereas simulation E1 produces a

convergence area stretched along the upstream wall, the convergence observed in the laboratory occurs in a

more centralized area near the head of the canyon. The more highly resolved, no-slip exeriments (E2, E3) by
contrast have a more localized region of convergence aligned over the axis of the canyon, as in the labo-

ratory measurements. Although laboratory estimates of vorticity and divergence are lacking close to the

canyon sidewalls (and thus do not accurately define the sidewall boundary layers), it seems visually ap-

parent that the no-slip numerical experiments have overly thick sidewall layers. (This is unsurprising, since

they were conducted with larger than molecular values of viscosity.) As a consequence, the central region of

negative divergence is ‘‘squeezed outwards’’ along the canyon axis relative to the laboratory estimates.

Nonetheless, overall structural and quantitative agreement with the laboratory vorticity and divergence

fields is clearly improved greatly by the introduction of the ‘‘true’’ no-slip bottom boundary condition. It is
not obvious from these figures, however, whether the reduction in the value of horizontal viscosity in E3

produced any positive improvement. This raises the question as to whether lower values of subgridscale

mixing coefficients, higher space/time resolution, and the correct (no-slip) bottom boundary condition

would be sufficient in themselves to eventually achieve agreement with the laboratory measurements to

within the limits of measurement error.

Fig. 8. Residual flow in the laboratory (top figure) and in numerical experiment E1 (lower figure) at the shelf-break level (z ¼ 0:025 m).
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A hint at the likely answer to this question is suggested in Fig. 11 wherein we plot several sections taken

through the residual density field. Figs. 11(a)–(c) show the time-mean density field just above the level of the

shelf break (z ¼ 0:024 m), that is, just along the base of the continental shelf. All three experiments show a

net cross-shelf transfer of dense water up onto the shelf. However the efficiency of this cross-shelf transfer

mechanism depends sensitively on the choice of bottom boundary condition and the value of the viscous

parameters. Whereas E1 produces a prominent pool of dense water on the shelf, the no-slip experiments are
less successful at producing cross-shelf pumping. The experiment with the lowest mixing coefficients, and

thus the thinnest bottom boundary layer, produces by far the weakest response.

Finally, Fig. 11(d) shows a vertical section through the residual density field along the line y ¼ �0:05 m
in the no-slip case E2. Two things are worth noting here. First, there is little apparent net deflection of the

isopycnal surfaces offshore, except in a tiny region near the lip of the shelf break. This is also in qualitative

(a) (b)

(c) (d)

F i g . 9 . R e s i d u a l v o r t i c i t y ( s

�1

) a t t h e s h e l f - b r e a k l e v e l (z ¼ 0:0 2 5 m ) : ( a ) E 1 , ( b ) E 2 , ( c ) E 3 , a n d ( d ) l a b o r a t o r y m e a s u r e m e n t s . T h e c o l o r

c o n t o u r s i n ( b – d ) a r e t h e s a m e a s t h o s e i n ( a ) .
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agreement with conductivity measurements taken in the laboratory, in which little net deflection was ob-

served. (Experiment E1 has a much more pronounced distortion of the time-mean isopycnals, another

indication of the relative inadequacy of the Ekman stress law formulation.) Second, note the structure of

the lens of dense water that has pooled on the shelf. It is very thin (having arrived via the bottom boundary
layer), but perhaps more importantly has a region of statically unstable fluid at its base. This latter feature

is a combined consequence of the no-slip bottom boundary condition, which causes the dense water to be

brought up inside the bottom boundary layer and not along the bottom itself, and the hydrostatic as-

sumption of SEOM, which does not allow for internal convective adjustment processes to develop.

So, remaining disagreement (of uncertain magnitude) between the numerical and laboratory models

must be expected so long as appropriate mechanisms for convective adjustment and mixing are absent in

the numerical simulations. It is possible that a simple-minded instantaneous convective mixing of the

unstable fluid, an artifice long used in large-scale oceanic models, would suffice here. However, it is possible

1a; 1b;1c; 1d;

Fig. 10. Residual divergence (s

i 1 ) at the shelf-break level (dA 0t025m): (a) E1, (b) E2, (c) E3, and (d) laboratory measurements. The

color contours in (b–d) are the same as those in (a).
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that only a non-hydrostatic simulation would materially improve the comparisons further. A non-hydro-

static version of SEOM is under development to explore just such questions.

12. Parallelization

The spectral element method is often characterized as a coarse-grained algorithm since heavy compu-

tations need to be performed before inter-element communication is required. An order-of-magnitude

analysis shows that the speed-up in a typical two-dimensional application is:

S ¼ P
1þ ðTc=KToÞ

;
Tc
KTo

� 1ffiffiffiffi
K

p
OðN 2Þ

; ð67Þ

Fig. 11. Residual densityfields at theshelf-break level (z¼0:024 m): (a)E1,(b) E2,and (c) E3.Also(d) a section oftheresidualdensity field alongy¼ � 0 : 0 5 m . T h e c o l o r c o n t o u r s i n ( b , c ) a r e t h e s a m e a s t h o s e u s e d i n ( a ) . M . I s k a n d a r a n i e t a l . / J o u r n a l o f C o m p u t a t i o n a l P h y s i c s 1 8 6 ( 2 0 0 3 ) 3 9 7 – 4 2 5 4 1 9



where P is the number of processors, K the number of spectral element within each processor, N the spectral

truncation, To is the computational time, and Tc is the communication time. The above formula shows that

the speed-up deteriorates as the second term in the denominator increases. This second term decreases

quadratically with the spectral truncation, and like the square root of the number of elements in the

partition. The formula also shows the distinguishing property of the spectral element method which gives it
its coarse-grain character: the communication cost increases only linearly with the order of the method

while its computational cost increases cubically, yielding a quadratic ratio between the two. High-order

finite difference methods, by contrast, show a quadratic increase of the communication cost with the order,

since the number of halo points needed to be passed between processors increases.

The good scalability characteristics of the spectral element model are illustrated in the speed-up and

MFLOPS curves shown in Fig. 12. The computations consist of simulating the oceanic circulation in the

North-Atlantic Basin using the grid shown in Fig. 1. These performance curves were obtained on a CRAY-

T3E, after removing the initialization cost. The peak measured floating-point operation count is 2.7
GFLOPS on 40 processors, reflecting a per-processor speed of about 67.5 MFLOPS.

The parallelization is based on a static decomposition of the gridwhich is then distributed to the processors.

Due to the irregularity of the grid and the decomposition, we have adopted amessage passing implementation

that allows precise control over the data decomposition and the overlapping of communications and com-

putations. The explicit message-passing approach also frees us from relying on compiler sophistication.

13. Discussion

We have presented a spectral element model for the solution of the Boussinesq and hydrostatic Navier–

Stokes equations. This model relies on a spectral element discretization in all three directions. These grids

are allowed to be unstructured in the horizontal, but are restricted to a constant number of elements in the

Fig. 12. Speed-up as a function of processor number on CRAY-T3E 600. The speed-up is defined as the ratio Tp=T1, where Tp is the

CPU time needed to compute a single time-step for a fixed-size problem. The dashed line represents the ideal linear speed-up. The

numbers represent MFLOPS rates.
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vertical at the present time. The vertical partition can be adjusted so as to emphasize arbitrary depth levels.

The model is terrain-following in that the deepest element follows the shape of the bathymetry.

The model features a free surface whose update is treated separately from the rest of the calculation, and

via the solution of two-dimensional, and shallow water like, equations. We have the choice of integrating

these equations implicitly with a time step synchronous with the three-dimensional equations, or split-

explicit with a small step that respects the CFL condition on the fast gravity modes followed by a long

integration step on the three-dimensional fields.

Vertical mixing schemes are necessary in hydrostatic models in order to prevent unstable stratification,
i.e., stratification where higher density fluid is sitting atop lighter fluid. These situations are unlikely to

occur in nature since any small perturbation will cause the heavy fluid parcel to accelerate downward,

acceleration that is omitted in the hydrostatic momentum equations. We have implemented various mixing

parameterizations in our simulations, either based on buoyancy frequency parameterization or on the

Richardson number stability criterion. Both parameterizations work by increasing the vertical viscosity

coefficient in order to enhance the vertical mixing process and return the fluid to a state of stable strati-

fication. The code currently uses the KPP parameterization of Large et al. [12].

Themodel presented herein has been applied to various test problems in the idealized and process-oriented
limits. The baroclinic Kelvin wave problem shows that the model retains its spectral convergence properties.

The gravitational adjustment problem highlights the ability of themodel to deal with frontogenesis when care

is taken to keep the front resolved, i.e., keeping its width larger than the spacing between two collocation

points. Finally the model results compare qualitatively well to the laboratory experiments on flow rectifi-

cation near a submarine canyon. The monograph of Haidvogel and Beckmann [7] contains more idealized

test problems and evaluates the performance of the present model as well as other well-known ocean models.

We are currently in the process of revisiting some aspects of our model prior to presenting realistic tests.

Specifically, we are experimenting with the Discontinuous Galerkin Method (DGM, see [3,11,15] for more
details), for the tracer evolution equations. DGM is better suited for advection dominated problems, and

has several advantages over the ‘‘classical’’ formulation presented here. The most attractive features of

DGM in the context of geophysical simulations are: enforcement of element-wise conservation, and the use

of discontinuous finite elements. The latter property will, among other things, allow an easier implemen-

tation of p-adaptivity for the tracer, as well as open the possibility to staggering the vertical velocity and

tracer collocation points.
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Appendix A. Depth-averaged equations

The vertical integral of the continuity equation takes the form:Z f

�h
r � udzþ wjz¼f � wjz¼�h ¼ 0: ðA:1Þ
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Leibnitz�s theorem is used to pull out the horizontal divergence term out of the integral and obtain:

r �
Z f

�h
udz

� �
þ ðwjf � ujf � rfÞ � ðwj�h þ uj�h � rhÞ ¼ 0: ðA:2Þ

The surface and bottom kinematic boundary conditions are invoked to eliminate the second and third term

in the above equation. Using the definition of the depth-averaged velocity we obtain the depth-averaged
continuity equation (13).

The derivation of the depth-averaged momentum equation is a little bit more intricate, and we proceed

by looking at individual terms in the equations. It is first useful to write the acceleration term as

Du
Dt

¼ ou

ot
þr � ðuuÞ þ owu

oz
ðA:3Þ

after invoking the continuity equation. The first term on the right-hand side of (A.3) is the local acceleration
and the second is the advective acceleration. Vertical integration of the acceleration leads to

oðhþ fÞU
ot

þr �
Z f

�h
uudz

� �
� u

of
ot

��
þ u � rf � w

��
z¼f

� uðu � rh½ þ wÞ�z¼�h ðA:4Þ

after interchanging the order of integration and differentiation. The third and fourth terms of (A.4) vanish by

virtue of the kinematic boundary conditions at the top and bottom surfaces. We now break up the velocity in

the second term in Eq. (A.4) as Uþ ðu�UÞ; the term in parenthesis has zero depth average by definition.

Substituting this expression in the second term in Eq. (A.4) and evaluating the integrals we arrive at:

ðhþ fÞ oU

ot

�
þU � rU

�
þr �

Z f

�h
ðu

�
�UÞðu�UÞdz

�
þU

of
ot

�
þr � ½ðhþ fÞU�

�
: ðA:5Þ

The depth-averaged continuity equation can now be invoked to eliminate the last term in the above ex-

pression. The integral in (A.4) represent the depth average of the nonlinear interaction of baroclinic ve-

locities.

Vertical integration of the Laplacian dissipation leads to:

r �
Z f

�h
arudz

� �
þ ð�aru � rf þ muzÞjf þ ð�aru � rh� muzÞj�h: ðA:6Þ

Note that the outward unit normal at the sea surface and the sea bed are given by:

njf ¼
1

ð1þ jrfj2Þ1=2
ð�rf þ kÞ; ðA:7Þ

nj�h ¼
1

ð1þ jrhj2Þ1=2
ð�rh� kÞ: ðA:8Þ

Hence, the second and third terms in Eq. (A.6) are nothing but the product of the friction force in the x-
direction with a vector parallel to the outward unit normal. Using the stress boundary conditions we arrive at

r �
Z f

�h
arudz

� �
þ sð1þ jrfj2Þ1=2 � ckukuð1þ jrhj2Þ1=2: ðA:9Þ

The metric terms appearing next to the bottom and surface stresses arise because of the curvature of the

bounding surfaces.
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The integration of the various linear terms is straightforward, the final form of the depth-averaged

momentum equation, after division by the total depth, is given in Eq. (14). The expressions for C and D are

given by

C ¼ 1

hþ f
r �

Z f

�h
ðu

�
�UÞðu�UÞdz

�
þ 1

hþ f

Z f

�h
rpdz; ðA:10Þ

D ¼ 1

hþ f
r �

Z f

�h
arudz

� �
: ðA:11Þ

Appendix B. Errors due to mapping between physical space and computational space

For the simple geometry shown in Fig. 3, the map from computational to physical space in the kth
element from the surface is

x ¼ L
n þ 1

2
; z ¼ h

K
r þ 1

2

�
� k
�
; ðB:1Þ

where hðnÞ=K is the horizontally varying height of an element. For this particular case, the only non-zero

metric terms are

xn ¼
L
2
;

zn ¼
hn

K
r þ 1

2

�
� k
�

zr ¼ h
2K

:
ðB:2Þ

For a rectangular element the mapping from x to n space can be represented exactly, and hence

kxn � xnk ¼ 0. The error in representing zn, and subsequently rx, depends essentially on how well the ba-

thymetry is represented; we have:

kzn � znk6
khn � hnk

K
max
k;r

r þ 1

2

�
� k
�
; ðB:3Þ

kzn � znk6
khn � hnk

K
: ðB:4Þ

Hence the 2-norm of the slopes can be bounded by [2]:

kzn � znk2 6AN ðð5=2Þ�mÞkhkHm : ðB:5Þ

Here N is the degree of the polynomial interpolating the depth h, A is a positive constant, and khkHm is the

Sobolev norm [2] of the depth. The latter is essentially a measure of the smoothness of h. We now turn our

attention to the rx term. Since rx ¼ ð�znÞ=zrxn, we have

krx � rxk ¼ �zn

zrxn
� �zn

zrxn
ðB:6Þ

¼ � zn � zn

zrxn
þ zn

zrzrxn
ðzr � zrÞ þ

zn
zrxnxn

ðxn � xnÞ: ðB:7Þ
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The last term in our case is zero and we can write

krx � rxk2 6
1

zrxn

����
����
2

kzn � znk2 þ
1

zrzrxn

����
����
2

kznk2kzr � zrk2 ðB:8Þ

6
2

L
2K
h

����
����
2

khn � hnk2 þ
2

L
4K2

hh

����
����
2

khnk2
kh� hk2

2K
: ðB:9Þ

We have the following result concerning the interpolation and differentiation errors of Legendre polyno-

mials:

kh� hk2 6BN ð1=2Þ�mkhkHm ; ðB:10Þ

khnk2 6CN 2khk2; ðB:11Þ

B and C are positive constants. Furthermore, we can bound the 2-norm with the maximum norm to get

khk2 6Dhmax;
1

h

����
����
2

6E
1

hmin
;

1

h

����
����
2

6 F
1

hmin
; ðB:12Þ

where D, E, and F are positive constants. Finally, we have the following bounds on the rx error

krx � rxk2 6Q
1

hmin
1

�
þ R

hmax
hmin

�
N ðð5=2Þ�mÞkhkHm : ðB:13Þ

The above expression shows that the error in the vertical mapping depends on the smoothness of the to-
pography, the degree of the polynomial N used to interpolate the depth, and on the ratio of the depth

excursion within a single element. Furthermore, the bound on the error decreases spectrally for an infinitely

smooth topography.
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